- Home
- Standard 12
- Mathematics
सरल कीजिए ,
$\cos \theta \left[ {\begin{array}{*{20}{l}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right]$ $ + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Solution
$\cos \theta \left[ {\begin{array}{*{20}{l}}
{\cos \theta }&{\sin \theta } \\
{ – \sin \theta }&{\cos \theta }
\end{array}} \right]$ $ + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ – \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\cos \theta \sin \theta } \\
{ – \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right]$ $ + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ – \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\ -\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ $\left(\because \quad \sin ^{2} \theta=1\right)$