- Home
- Standard 12
- Mathematics
$x$ तथा $y$ के प्रद्त किन मानों के लिए आव्यूहों के निम्नलिखित युग्म समान हैं?
$\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]=\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$
$x=\frac{-1}{3}$, $y=7$
$x=\frac{-1}{3}$, $y=\frac{-2}{3}$
$y=7$, $x=\frac{-2}{3}$
ज्ञात करना संभव नहीं है
Solution
It is given that $\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]=\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$
Equating the corresponding elements, we get:
$3 x+7=0 \Rightarrow x=-\frac{7}{3}$
$5=y-2 \Rightarrow y=7$
$y+1=8 \Rightarrow y=7$
$2-3 x=4 \Rightarrow x=-\frac{2}{3}$
We find that on comparing the corresponding elements of the two matrices, we get two different values of $x$, which is not possible.
Hence, it is not possible to find the values of $\mathrm{x}$ and $\mathrm{y}$ for which the given matrices are equal.