સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
$x = 1,\,2$
$x = 2,\,3$
$x = 1,\,p,\,2$
$x = 1,\,2,\, - p$
જો $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ તો $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$ = . . .
જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .
સમીકરણ સહતિ $x+y+z=\alpha$ ; $\alpha x+2 \alpha y+3 z=-1$ ; $x+3 \alpha y+5 z=4$ સુસંગત થાય તેવી $\alpha$ ની કિંમતોની સંખ્યા ............ છે.
$\lambda $ ની . . . . કિમત માટે સમીકરણની સંહતિ $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ ને એકપણ ઉકેલ શકય નથી.
$c \in R$ ની મહતમ કિમંત મેળવો કે જેથી સુરેખ સમીકરણો $x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ ને શૂન્યતર ઉકેલ છે .