$2 \cos ^{2} x+3 \sin x=0$ ઉકેલો.
The equation can be written as
$2\left(1-\sin ^{2} x\right)+3 \sin x=0$
or $2 \sin ^{2} x-3 \sin x-2=0$
or $(2 \sin x+1)(\sin x-2)=0$
Hence $\sin x=-\frac{1}{2} \quad$ or $\quad \sin x=2$
But $\sin x=2$ is not possible (Why?)
Therefore $\sin x=-\frac{1}{2}=\sin \frac{7 \pi}{6}$
Hence, the solution is given by
$x=n \pi+(-1)^{n} \frac{7 \pi}{6}, \text { where } n \in Z.$
જો $\cos \theta = \frac{{ - 1}}{2}$ અને ${0^o} < \theta < {360^o}$ તો $\theta $ ની કિમતો મેળવો.
${\sin ^2}\theta + \sin \theta = 2$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
અહી $S$ એ અંતરાલ $[0,4 \pi]$ માં સમીકરણ $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ ઉકેલનો સરવાળો દર્શાવે છે તો $\frac{8 \mathrm{~S}}{\pi}$ ની કિમંત મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$ તો $B =$
ધારો કે $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {}$. જો $T =\sum_{\theta \in S } \cos 2 \theta$ હોય. તો $T + n ( S )$ = ...............