Solve $2 \cos ^{2} x+3 \sin x=0$
The equation can be written as
$2\left(1-\sin ^{2} x\right)+3 \sin x=0$
or $2 \sin ^{2} x-3 \sin x-2=0$
or $(2 \sin x+1)(\sin x-2)=0$
Hence $\sin x=-\frac{1}{2} \quad$ or $\quad \sin x=2$
But $\sin x=2$ is not possible (Why?)
Therefore $\sin x=-\frac{1}{2}=\sin \frac{7 \pi}{6}$
Hence, the solution is given by
$x=n \pi+(-1)^{n} \frac{7 \pi}{6}, \text { where } n \in Z.$
If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are
The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is
Let $f(x) = \cos \sqrt {x,} $ then which of the following is true
Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$