- Home
- Standard 12
- Mathematics
શ્રેણિક પદ્ધતિથી નીચેનાં સુરેખ સમીકરણોની સંહતિનો ઉકેલ મેળવો : $ 3 x-2 y+3 z =8 \,;\,2 x+y-z =1 \,;\,4 x-3 y+2 z =4$
$x=2, y=2$ અને $z=3$
$x=1, y=2$ અને $z=3$
$x=1, y=2$ અને $z=2$
$x=1, y=3$ અને $z=3$
Solution
Solution The system of equations can be written in the form $\mathrm{AX}=\mathrm{B}$, where
$A = \left[ {\begin{array}{*{20}{c}}
3&{ – 2}&3 \\
2&1&{ – 1} \\
4&{ – 3}&2
\end{array}} \right],X = \left[ {\begin{array}{*{20}{l}}
x \\
y \\
z
\end{array}} \right]{\text{ and }}B = \left[ {\begin{array}{*{20}{l}}
8 \\
1 \\
4
\end{array}} \right]$
We see that
$|A|=3(2-3)+2(4+4)+3(-6-4)=-17 \neq 0$
Hence, $A$ is nonsingular and so its inverse exists. Now
$\begin{gathered}
{{\text{A}}_{11}} = – 1,\,\,\,{{\text{A}}_{12}} = – 8,\,\,\,{{\text{A}}_{13}} = – 10 \hfill \\
{{\text{A}}_{21}} = – 5,\,\,\,{{\text{A}}_{22}} = – 6,\,\,\,{{\text{A}}_{23}} = 1 \hfill \\
{{\text{A}}_{31}} = – 1,\,\,\,{{\text{A}}_{32}} = 9,\,\,\,{{\text{A}}_{33}} = 7 \hfill \\
\end{gathered} $
$Therefore\,\,\,\,\,{A^{ – 1}} = – \frac{1}{{17}}\left[ {\begin{array}{*{20}{c}}
{ – 1}&{ – 5}&{ – 1} \\
{ – 8}&{ – 6}&9 \\
{ – 10}&1&7
\end{array}} \right]\,$
$So\quad \,X = {A^{ – 1}}B = – \frac{1}{{17}}\left[ {\begin{array}{*{20}{l}}
{ – 1}&{ – 5}&{ – 1} \\
{ – 8}&{ – 6}&9 \\
{ – 10}&1&7
\end{array}} \right]\left[ {\begin{array}{*{20}{l}}
8 \\
1 \\
4
\end{array}} \right]$
$i.e.\,\,\,\,\,\left[ {\begin{array}{*{20}{l}}
x \\
y \\
z
\end{array}} \right] = – \frac{1}{{17}}\left[ {\begin{array}{*{20}{l}}
{ – 17} \\
{ – 34} \\
{ – 51}
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
1 \\
2 \\
3
\end{array}} \right]$
$Hence\quad x = 1,y = 2\,and\,z = 3$