Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is
$\frac{{24}}{{25}}$
$\frac{{64}}{{25}}$
$\frac{{192}}{{25}}$
$\frac{{192}}{5}$
If the tangent at the point $P$ on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the $y$- axis, then the length of $PQ$ is
If the line $3x -4y -k = 0 (k > 0)$ touches the circle $x^2 + y^2 -4x -8y -5 = 0$ at $(a, b)$ then $k + a + b$ is equal to :-
If a circle, whose centre is $(-1, 1)$ touches the straight line $x + 2y + 12 = 0$, then the coordinates of the point of contact are
If ${c^2} > {a^2}(1 + {m^2}),$ then the line $y = mx + c$ will intersect the circle ${x^2} + {y^2} = {a^2}$
Let $PQ$ and $RS$ be tangents at the extremeties of the diameter $PR$ of a circle of radius $r$. If $PS$ and $RQ$ intersect at a point $X$ on the circumference of the circle, then $2r$ equals