If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, then $n(C) = $
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
If $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$ then $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ is equal to
If $A=\{-1,1\},$ find $A \times A \times A.$
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cup(A \times C)$