વિધાન $1$ :$3$  કક્ષાવાળા વિંસમિત શ્રેણિકનો નિશ્રાયક શૂન્ય હોય છે.

વિધાન $2$: કોઇપણ શ્રેણિક $A$  માટે $\det \left( {{A^T}} \right) = {\rm{det}}\left( A \right)$ અને $\det \left( { - A} \right) = - {\rm{det}}\left( A \right)$ જયાં $\det \left( A \right) = A$ નો નિશ્રાયક.

  • [AIEEE 2011]
  • A

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે.

  • B

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.

  • C

    વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.

  • D

    વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.

Similar Questions

સમીકરણની સંહતિ $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ નું સમાધાન કરે તેવી $x,y,z$ ની કિમત અનુક્રમે . . . . થાય.

સમીકરણની સંહતિ $a + b - 2c = 0,$ $2a - 3b + c = 0$ અને $a - 5b + 4c = \alpha $ એ સુસંગત થવા માટે $\alpha$ મેળવો.

જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ અને $\alpha \ne \frac{1}{2} $ તો . . .

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $

જો ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , હોય તો  $\left| {\begin{array}{*{20}{c}}
  {{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\ 
  1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\ 
  {{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}} 
\end{array}} \right|$ ની કિમત મેળવો.