3 and 4 .Determinants and Matrices
hard

જો $a,b,c$ એ ધન વાસ્તવિક સંખ્યા છે. તો આપલે સમીકરણ સંહતિ $x, y$ અને $z$ ના સ્વરૂપે $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$ હોય તો ઉકેલની સંખ્યા મેળવો.

A

શૂન્ય ઉકેલ

B

એકાકી ઉકેલ

C

અનંત ઉકેલ

D

શાંત ઉકેલ

(IIT-1995)

Solution

(b) Let $\frac{{{x^2}}}{{{a^2}}} = X,\frac{{{y^2}}}{{{b^2}}} = Y$and $\frac{{{z^2}}}{{{c^2}}} = Z$, .

then the given system of equations is $X + Y – Z = 1,$ $X – Y + Z = 1$, $ – X + Y + Z = 1$.

The coefficient matrix is $A = \left[ {\begin{array}{*{20}{c}}1&1&{ – 1}\\1&{ – 1}&1\\{ – 1}&1&1\end{array}} \right]$

Clearly $|A| \ne 0$. So the given system of equations has unique solution.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.