Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
${({x^2} + {y^2})^2} = {b^2}{x^2} + {a^2}{y^2}$
${({x^2} + {y^2})^2} = {b^2}{x^2} - {a^2}{y^2}$
${({x^2} + {y^2})^2} = {a^2}{x^2} - {b^2}{y^2}$
${({x^2} + {y^2})^2} = {a^2}{x^2} + {b^2}{y^2}$
In an ellipse $9{x^2} + 5{y^2} = 45$, the distance between the foci is
A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.
A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :
In an ellipse, its foci and ends of its major axis are equally spaced. If the length of its semi-minor axis is $2 \sqrt{2}$, then the length of its semi-major axis is
Let the equations of two ellipses be ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ and ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1,$ If the product of their eccentricities is $\frac {1}{2},$ then the length of the minor axis of ellipse $E_2$ is