On the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ let $P$ be a point in the second quadrant such that the tangent at $\mathrm{P}$ to the ellipse is perpendicular to the line $x+2 y=0$. Let $S$ and $\mathrm{S}^{\prime}$ be the foci of the ellipse and $\mathrm{e}$ be its eccentricity. If $\mathrm{A}$ is the area of the triangle $SPS'$ then, the value of $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ is :

  • [JEE MAIN 2021]
  • A

    $12$

  • B

    $6$

  • C

    $14$

  • D

    $24$

Similar Questions

Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ from any of its foci?

  • [JEE MAIN 2020]

If the ellipse $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the $x$-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the $y$-axis, then the eccentricity of the ellipse is

  • [JEE MAIN 2022]

If the line $y = mx + c$touches the ellipse $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, then $c = $

An ellipse, with foci at $(0, 2)$ and $(0, -2)$ and minor axis of length $4$, passes through which of the following points?

  • [JEE MAIN 2019]

Let $A,B$ and $C$ are three points on ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$where line joing $A \,\,\&\,\, C$ is parallel to the $x-$axis and $B$ is end point of minor axis whose ordinate is positive then maximum area of $\Delta ABC,$ is-