વિધાન $1$ : જે વર્તુળની ત્રિજ્યા $\sqrt {10} $ અને વ્યાસ રેખા $2x + y = 5$ પર આવેલ હોય તેવું એક જ વર્તુળનું સમીકરણ $x^2 + y^2 - 6x +2y = 0$
વિધાન $2$ : સમીકરણ $2x + y = 5$ એ વર્તુળ $x^2 + y^2 -6x+2y = 0$ ને લંબ છે
વિધાન $1$ ખોટું છે , વિધાન $2$ સાચું છે
વિધાન $1$ સાચું છે , વિધાન $2$ સાચું છે અને વિધાન $2$ વિધાન $1$ ની સાચી સમજૂતી આપે છે
વિધાન $1$ સાચું છે , વિધાન $2$ ખોટું છે
વિધાન $1$ સાચું છે , વિધાન $2$ સાચું છે પરંતુ વિધાન $2$ વિધાન $1$ ની સાચી સમજૂતી આપતું નથી
બિંદુ $(1,\sqrt 3 )$ માંથી વર્તૂળ ${x^2} + {y^2} = 4$ પર દોરવામાં આવેલ સ્પર્શક અને અભિલંબ અને ધન $x$- અક્ષ દ્વારા બનતા ત્રિકોણનું ક્ષેત્રફળ મેળવો.
વર્તૂળ કે જેની ત્રિજયા $r$ છે અને વ્યાસ $PR$ ના અત્યબિંદુ પર દોરવામાં આવેલ સ્પર્શકો $PQ$ અને $RS$ છે. જો $PS$ અને $RQ$ એ વર્તૂળપરના બિંદુ $X$ માં છેદે છે , તો $2r$ મેળવો.
વર્તૂળ $x^2 + y^2 = 4$ નો બિંદુ $P\,\,\left( {\sqrt 3 ,\,\,1} \right)$આગળ $PT$ સ્પર્શક દોર્યો. $PT$ ને લંબ સુરેખા $L$ એ વર્તૂળ $(x - 3)^2+ y^2 = 1$ નો સ્પર્શક છે.$L$ નું શક્ય સમીકરણ ...
જો વર્તૂળ બંને અક્ષોને સ્પર્શેં અને સીધી રેખા $4x + 3y = 6$ ને પ્રથમ ચરણમાં અને તેની નીચે આવેલ હોય, તેવા વર્તૂળનું સમીકરણ :
વર્તુળ એ $y$ -અક્ષને બિંદુ $(0,4)$ આગળ સ્પર્શે છે અને બિંદુ $(2,0) $ માંથી પસાર થાય છે તો આપેલ પૈકી કઈ રેખા વર્તુળનો સ્પર્શક ન થાય ?