यदि $a$ त्रिज्या का एक गोला $v$ चाल से $\eta$ श्यानता नियताकं के एक द्रव में चलता है, तो स्टोक के नियमानुसार (Stoke's Law) उस पर $F$ श्यानता बल लगता है, जिसे निम्न समीकरण से दिखाया गया है : $F=6 \pi \eta a v$ यदि यह द्रव एक बेलनाकार नली, जिसकी त्रिज्या $r$, लंबाई 1 , एवं दोनों सिरों पर दाबांतर $P$ है, के अंदर बह रहा है, तब जल का $t$ समय में बहा हुआ आयतन निम्न प्रकार से लिखा जा सकता है:

$\stackrel{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c \text {, }$

जहाँ $k$ एक विमाहीन स्थिरांक है । $a, b$ एवं $c$ के सही मान निम्नलिखित हैं:

  • [KVPY 2015]
  • A

    $a=1, b=-1, c=4$

  • B

    $a=-1, b=1, c=4$

  • C

    $a=2, b=-1, c=3$

  • D

    $a=1, b=-2, c=-4$

Similar Questions

एक तरंग का समीकरण, $Y = A\sin \omega \left( {\frac{x}{v} - K} \right)$ से दिया जाता है। जहाँ $\omega $ कोणीय वेग तथा $v$ रेखीय वेग है। $K$ की विमा है

कोई वस्तु द्रव में गतिशील है। इस पर क्रियाशील श्यान बल, वेग के समानुपाती है, तो समानुपातिक नियतांक की विमा होगी

नीचे दो कथन दिए गए हैं : इनमें से एक 'अभिकथन (A)' द्वारा एवं दूसरा 'कारण (R)' द्वारा निरूपित है।
अभिकथन $(A)$ : किसी द्रव की बूँद के दोलन का आवर्तकाल, पृष्ठ तनाव $( S )$ पर निर्भर करता है। यदि द्रव का घनत्व $\rho$ एवं बूँद की त्रिज्या $r$ तो $T$ $= k \sqrt{ pr ^3 / s }$ विमाओं के अनुसार सही है। जहाँ $K$ विमाविहीन है।
कारण $(R)$ : विमीय विश्लेषण करने पर, हमें $R.H.S.$ (दाहिनी हाथ की तरफ) पर, समय की विमा से अलग विमा प्राप्त होती है।
उपरोक्त कथनों के आधार पर, नीचे दिए गए विकल्पों में से सही उत्तर चुनें

  • [JEE MAIN 2022]

एक समी. में $P$ का समय के साथ संबंध इस प्रकार है $P = P _{0} \exp \left(-\alpha t ^{2}\right)$ जहां $\alpha$ एक नियतांक है, तो $\alpha$ की विमा होगी

  • [AIPMT 1993]

इकाई समय में $X$अक्ष के लम्बवत् एकांक क्षेत्रफल से गुजरने वाले कणों की संख्या $n = - D\frac{{({n_2} - {n_1})}}{{({x_2} - {x_1})}}$ द्वारा दी जाती है। यहाँ ${n_1}$ एवं ${n_2}$ क्रमश: ${x_1}$ एवं ${x_2}$ स्थिति में प्रति इकाई आयतन में स्थित कणों की संख्या है, तब विसरण गुणांक $D$ का विमीय सूत्र होगा