Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)

  • A

    $\frac {1}{2}$

  • B

    $2$

  • C

    $3$

  • D

    $\frac {3}{2}$

Similar Questions

Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is

Number of solutions of equation $|x^2 -2|x||$ = $2^x$ , is

If $\alpha, \beta $ and $\gamma$ are the roots of equation ${x^3} - 3{x^2} + x + 5 = 0$ then $y = \sum {\alpha ^2} + \alpha \beta \gamma $ satisfies the equation

Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

Then which of the following options is/are correct?

$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$

$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$

$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$

  • [IIT 2019]

If $a$ and $b$ are the roots of equation $x^2-7 x-1=0$, then the value of $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ is equal to $........$.

  • [JEE MAIN 2023]