Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)

  • A

    $\frac {1}{2}$

  • B

    $2$

  • C

    $3$

  • D

    $\frac {3}{2}$

Similar Questions

If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

The sum, of the squares of all the roots of the equation $x^2+|2 x-3|-4=0$, is :

  • [JEE MAIN 2025]

If $|x - 2| + |x - 3| = 7$, then $x =$

If $\alpha, \beta$ are roots of the equation $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ and $P_{n}=\alpha^{n}-\beta^{n}$ for each positive integer $\mathrm{n}$, then the value of $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ is equal to $....$

  • [JEE MAIN 2021]