- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
medium
For what value of $\lambda$ the sum of the squares of the roots of ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ is minimum
A
$3/2$
B
$1$
C
$1/2$
D
$11/4$
Solution
(c) Given equation is ${x^2} + (2 + \lambda )x – \frac{1}{2}(1 + \lambda ) = 0$
So, $\alpha + \beta = – (2 + \lambda ) = 0$ and $\alpha \beta = – \left( {\frac{{1 + \lambda }}{2}} \right)$
Now, ${\alpha ^2} + {\beta ^2} = {(\alpha + \beta )^2} – 2\alpha \beta $
$ \Rightarrow {\alpha ^2} + {\beta ^2} = {\left[ { – (2 + \lambda )} \right]^2} + 2.\frac{{(1 + \lambda )}}{2}$
==> ${\alpha ^2} + {\beta ^2} = {\lambda ^2} + 4 + 4\lambda + 1 + \lambda = {\lambda ^2} + 5\lambda + 5$
which is minimum for $\lambda = 1/2$.
Standard 11
Mathematics