Suppose, the acceleration due to gravity at the Earth's surface is $10\, m\, s^{-2}$ and at the surface of Mars it is $4.0\, m\, s^{-2}$. A $60\, kg$ pasenger goes from the Earth to the Mars in a spaceship moving with a constant velocity. Neglect all other objects in the sky. Which part of figure best represents the weight (net gravitational force) of the passenger as a function of time?

536-206

  • A

    $A$

  • B

    $B$

  • C

    $C$

  • D

    $D$

Similar Questions

The magnitudes of gravitational field at distances $r_1$ and $r_2$ from the centre of a uniform sphere of radius $R$ and mass $M$ are $F_1$ and $F_2$ respectively. Then-

The kinetic energy needed to project a body of mass $m$ from the earth's surface (radius $R$) to infinity is

Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is

Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$ . the space around the masses is now filled with a liquid of specific gravity $3$ . The gravitational force between bodies will now be

A particle is kept at rest at a distance $'R'$ from the surface of earth (of radius $R$). The minimum speed with which it should be projected so that it does not return is