ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$

  • [JEE MAIN 2023]
  • A

    $11$

  • B

    $12$

  • C

    $10$

  • D

    $13$

Similar Questions

વિધેય $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ નો પ્રદેશગણ મેળવો.

જો $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ અને $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;તો $S :$

  • [JEE MAIN 2016]

વિધેય $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ નો પ્રદેશ મેળવો.

જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.

  • [IIT 2001]

ધારોકે $R =\{ a , b , c , d , e \}$ અને $S =\{1,2,3,4\}$ તો $f( a ) \neq 1$ હોય તેવા $f: R \rightarrow S$ વ્યાપ્ત વિધેયોની સંખ્યા $.........$ છે.

  • [JEE MAIN 2023]