माना $f$ एक फलन है जो सभी $x, y \in \mathbb{N}$ के लिए $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ को संतुष्ट करता है एवं $\mathrm{f}(1)=\frac{1}{5}$ है यदि $\sum_{\mathrm{n}=1}^{\mathrm{m}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}=\frac{1}{12}$ हैं, तब $\mathrm{m}$ बराबर है_________. 

  • [JEE MAIN 2023]
  • A

    $11$

  • B

    $12$

  • C

    $10$

  • D

    $13$

Similar Questions

${\sin ^{ - 1}}({\log _3}x)$ का प्रान्त है

यादि $f(x) = \cos (\log x)$, तब  $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]

यदि $f(x)=\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x}-1, x \in R$ है, तो समीकरण $f(x)=0$ का/के

  • [JEE MAIN 2014]

यदि $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$, $x \in R$ के लिए, तब $f(2002) = $

माना $f( x )= a ^{ x }( a >0)$ को $f( x )=f_{1}( x )+f_{2}( x )$, के रूप में लिखा गया है जबकि $f_{1}( x )$ एक सम फलन है और $f_{2}( x )$ एक विषम फलन है, तो $f_{1}( x + y )+f_{1}( x - y )$ बराबर है 

  • [JEE MAIN 2019]