1.Relation and Function
hard

माना $f$ एक फलन है जो सभी $x, y \in \mathbb{N}$ के लिए $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ को संतुष्ट करता है एवं $\mathrm{f}(1)=\frac{1}{5}$ है यदि $\sum_{\mathrm{n}=1}^{\mathrm{m}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}=\frac{1}{12}$ हैं, तब $\mathrm{m}$ बराबर है_________. 

A

$11$

B

$12$

C

$10$

D

$13$

(JEE MAIN-2023)

Solution

$\because f(1)=\frac{1}{5} \therefore f(2)=f(1)+f(1)=\frac{2}{5}$

$f(2)=\frac{2}{5} \quad f(3)=f(2)+f(1)=\frac{3}{5}$

$f(3)=\frac{3}{5}$

$\therefore \sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}$

$=\frac{1}{5} \sum \limits_{n=1}^m\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$

$=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots .+\frac{1}{m+1}-\frac{1}{m+2}\right)$

$=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{m+2}\right)=\frac{m}{10(m+2)}=\frac{1}{12}$

$\therefore m=10$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.