माना $f$ एक फलन है जो सभी $x, y \in \mathbb{N}$ के लिए $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ को संतुष्ट करता है एवं $\mathrm{f}(1)=\frac{1}{5}$ है यदि $\sum_{\mathrm{n}=1}^{\mathrm{m}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}=\frac{1}{12}$ हैं, तब $\mathrm{m}$ बराबर है_________.
$11$
$12$
$10$
$13$
माना $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ अन्तराल $[0, 1]$ में परिभाषित है। $f(x)$ के अन्तराल $[-1, 1]$ में विषम प्रसार $(odd\, extensions)$ है
यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|
फलन $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ जहाँ $[.]$ महत्तम पूर्णांक फलन है, परिभाषित है
एक उपयुक्त वास्वतिक अचर $a$, चुनकर फलन $f: R -\{- a \} \rightarrow R f( x )=\frac{ a - x }{ a + x }$ द्वारा परिभाषित किया गया है। इसके अतिरिक्त माना किसी वास्तविक संख्या $x \neq- a$ तथा $f( x ) \neq- a$, के लिए $(f \circ f)( x )= x$ है, तो $f\left(-\frac{1}{2}\right)$ निम्न में से किसके बराबर है।
एक फलन $f ( x ), f ( x )=\frac{5^{ x }}{5^{ x }+5}$, द्वारा दिया गया है, तो श्रेणी $f \left(\frac{1}{20}\right)+ f \left(\frac{2}{20}\right)+ f \left(\frac{3}{20}\right)+\ldots \ldots+ f \left(\frac{39}{20}\right)$ का योगफल बराबर है