If $\alpha, \beta$ are the roots of the equation, $x^2-x-1=0$ and $S_n=2023 \alpha^n+2024 \beta^n$, then
$2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$\mathrm{S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$
$\mathrm{S}_{11}=\mathrm{S}_{10}+\mathrm{S}_{12}$
Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to
Exact set of values of $a$ for which ${x^3}(x + 1) = 2(x + a)(x + 2a)$ is having four real solutions is
The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are
For what value of $\lambda$ the sum of the squares of the roots of ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ is minimum
Leela and Madan pooled their music $CD's$ and sold them. They got as many rupees for each $CD$ as the total number of $CD's$ they sold. They share the money as follows: Leela first takes $10$ rupees, then Madan takes $10$ rupees and they continue taking $10$ rupees alternately till Madan is left out with less than $10$ rupees to take. Find the amount that is left out for Madan at the end, with justification.