- Home
- Standard 11
- Mathematics
If $\alpha, \beta$ are the roots of the equation, $x^2-x-1=0$ and $S_n=2023 \alpha^n+2024 \beta^n$, then
$2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$\mathrm{S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$
$\mathrm{S}_{11}=\mathrm{S}_{10}+\mathrm{S}_{12}$
Solution
${x}^2-\mathrm{x}-1=0 $
$\mathrm{~S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^{\mathrm{n}} $
$ \mathrm{S}_{\mathrm{n}-1}+\mathrm{S}_{\mathrm{n}-2}=2023 \alpha^{\mathrm{n}=1}+2024 \beta^{\mathrm{n}-1}+2023 \alpha^{\mathrm{n}-2}+2024 \beta^{\mathrm{n}-2} $
$ =2023 \alpha^{\mathrm{n}-2}[1+\alpha]+2024 \beta^{\mathrm{n}-2}[1+\beta] $
$=2023 \alpha^{\mathrm{n}-2}\left[\alpha^2\right]+2024 \beta^{\mathrm{n}-2}\left[\beta^2\right] $
$ =2023 \alpha^{\mathrm{n}}+2024 \beta^{\mathrm{n}} $
$ \mathrm{S}_{\mathrm{n}-1}+\mathrm{S}_{\mathrm{n}-2}=\mathrm{S}_{\mathrm{n}} $
$ \mathrm{Put} \mathrm{n}=12 $
$\mathrm{~S}_{11}+\mathrm{S}_{10}=\mathrm{S}_{12}$