If $\alpha, \beta$ are the roots of the equation, $x^2-x-1=0$ and $S_n=2023 \alpha^n+2024 \beta^n$, then
$2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$\mathrm{S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$
$2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$
$\mathrm{S}_{11}=\mathrm{S}_{10}+\mathrm{S}_{12}$
Let $a$ , $b$ , $c$ are roots of equation $x^3 + 8x + 1 = 0$ ,then the value of
$\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ is equal to
Let $t$ be real number such that $t^2=a t+b$ for some positive integers $a$ and $b$. Then, for any choice of positive integers $a$ and $b, t^3$ is never equal to
If $x$ is real, then the value of $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ does not lie between
The number of solutions of $\sin ^2 \mathrm{x}+\left(2+2 \mathrm{x}-\mathrm{x}^2\right) \sin \mathrm{x}-3(\mathrm{x}-1)^2=0$, where $-\pi \leq \mathrm{x} \leq \pi$, is....................
A man standing on a railway platform noticed that a train took $21\, s$ to cross the platform (this means the time elapsed from the moment the engine enters the platform till the last compartment leaves the platform) which is $88\,m$ long, and that it took $9 s$ to pass him. Assuming that the train was moving with uniform speed, what is the length of the train in meters?