If $\alpha, \beta$ are the roots of the equation, $x^2-x-1=0$ and $S_n=2023 \alpha^n+2024 \beta^n$, then

  • [JEE MAIN 2024]
  • A

     $2 \mathrm{~S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$

  • B

     $\mathrm{S}_{12}=\mathrm{S}_{11}+\mathrm{S}_{10}$

  • C

     $2 \mathrm{~S}_{11}=\mathrm{S}_{12}+\mathrm{S}_{10}$

  • D

     $\mathrm{S}_{11}=\mathrm{S}_{10}+\mathrm{S}_{12}$

Similar Questions

The number of distinct real roots of the equation $x ^{7}-7 x -2=0$ is

  • [JEE MAIN 2022]

Leela and Madan pooled their music $CD's$ and sold them. They got as many rupees for each $CD$ as the total number of $CD's$ they sold. They share the money as follows: Leela first takes $10$ rupees, then Madan takes $10$ rupees and they continue taking $10$ rupees alternately till Madan is left out with less than $10$ rupees to take. Find the amount that is left out for Madan at the end, with justification.

  • [KVPY 2010]

If $\alpha ,\beta ,\gamma$  are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-

The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be

The equation${e^x} - x - 1 = 0$ has