मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
यदि समीकरण ${x^3} + x + 1 = 0$ के मूल $\alpha ,\beta ,\gamma $ हों, तो ${\alpha ^3}{\beta ^3}{\gamma ^3}$ का मान होगा
यदि $|{x^2} - x - 6| = x + 2$, तो $x$ के मान हैं
समीकरण $\mathrm{x}^2-4 \mathrm{x}+[\mathrm{x}]+3=\mathrm{x}[\mathrm{x}]$, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक फलन है,
यदि $x$ वास्तविक है तथा $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}}$ हो, तब
यदि $x$ वास्तविक है तथा $x + 2 > \sqrt {x + 4} $ को सन्तुष्ट करता है, तब