मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा

  • [KVPY 2016]
  • A
  • B
  • C
  • D

Similar Questions

समीकरण ${e^x} - x - 1 = 0$ के होंगे     

बहुपद समीकरण $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ का

  • [KVPY 2016]

यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा

समीकरण $\left|x^2-8 x+15\right|-2 x+7=0$ के सभी मूलों का योग है:

  • [JEE MAIN 2023]

यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?

  • [KVPY 2013]