मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$
बहुपद समीकरण $x^4-x^2+2 x-1=0$ के वास्तविक मूलों की संख्या है:
वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा
समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के
यदि समीकरण $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$ का एक मूल $3 + i\sqrt 6 $ है, तब अन्य मूल होंगे