- Home
- Standard 12
- Mathematics
Suppose the vectors $x_{1}, x_{2}$ and $x_{3}$ are the solutions of the system of linear equations, $Ax = b$ when the vector $b$ on the right side is equal to $b _{1}, b _{2}$ and $b _{3}$ respectively. If $x =\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], x _{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], x _{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b _{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ $b _{2}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ and $b _{3}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right],$ then the determinant of $A$ is equal to
$\frac{1}{2}$
$4$
$\frac{3}{2}$
$2 $
Solution
$A x_{1}=b_{1}$
$A x_{2}=b_{2}$
$A x_{3}=b_{3}$
$\Rightarrow\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right|$
$\Rightarrow|A|=\frac{4}{2}=2$