3 and 4 .Determinants and Matrices
hard

Suppose the vectors $x_{1}, x_{2}$ and $x_{3}$ are the solutions of the system of linear equations, $Ax = b$ when the vector $b$ on the right side is equal to $b _{1}, b _{2}$ and $b _{3}$ respectively. If $x =\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], x _{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], x _{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b _{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ $b _{2}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ and $b _{3}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right],$ then the determinant of $A$ is equal to

A

$\frac{1}{2}$

B

$4$

C

$\frac{3}{2}$

D

$2 $

(JEE MAIN-2020)

Solution

$A x_{1}=b_{1}$

$A x_{2}=b_{2}$

$A x_{3}=b_{3}$

$\Rightarrow\left|\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right|$

$\Rightarrow|A|=\frac{4}{2}=2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.