The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$

  • [IIT 2003]
  • A

    $27/4$

  • B

    $9$

  • C

    $27/2$

  • D

    $27$

Similar Questions

The eccentricity of the ellipse ${\left( {\frac{{x - 3}}{y}} \right)^2} + {\left( {1 - \frac{4}{y}} \right)^2} = \frac{1}{9}$ is

Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{b^2}=1,( a > b )$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is

  • [JEE MAIN 2025]

The equation of the ellipse referred to its axes as the axes of coordinates with latus rectum of length $4$ and distance between foci $4 \sqrt 2$ is-

Let $E$ be the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ and $C$ be the circle ${x^2} + {y^2} = 9$. Let $P$ and $Q$ be the points $(1, 2)$ and $(2, 1)$ respectively. Then

  • [IIT 1994]

An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $2/3 $ then the eccentricity of the ellipse is :