Tangents $AB$ and $AC$ are drawn from the point $A(0,\,1)$ to the circle ${x^2} + {y^2} - 2x + 4y + 1 = 0$. Equation of the circle through $A, B$ and $C$ is
${x^2} + {y^2} + x + y - 2 = 0$
${x^2} + {y^2} - x + y - 2 = 0$
${x^2} + {y^2} + x - y - 2 = 0$
None of these
The angle between the two tangents from the origin to the circle ${(x - 7)^2} + {(y + 1)^2} = 25$ is
The equation of three circles are ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ and ${x^2} + {y^2} - 16x + 81 = 0.$ The co-ordinates of the point from which the length of tangent drawn to each of the three circle is equal is
A tangent drawn from the point $(4, 0)$ to the circle $x^2 + y^2 = 8$ touches it at a point $A$ in the first quadrant. The co-ordinates of another point $B$ on the circle such that $l\, (AB) = 4$ are :
If the area of the triangle formed by the positive $x-$axis, the normal and the tangent to the circle $(x-2)^{2}+(y-3)^{2}=25$ at the point $(5,7)$ is $A$ then $24 A$ is equal to ...... .
The equations of the tangents to the circle ${x^2} + {y^2} - 6x + 4y = 12$ which are parallel to the straight line $4x + 3y + 5 = 0$, are