The equation of circle which touches the axes of coordinates and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is ${x^2} + {y^2} - 2cx - 2cy + {c^2} = 0$, where $c$ is
$1$
$2$
$3$
$6$
$S_1$ and $S_2$ are two concentric circles of radii $1$ and $2$ respectively. Two parallel tangents to $S_1$ cut off an arc from $S_2$. The length of the arc is
The centres of two circles $C_1$ and $C_2$ each of unit radius are at a distance of $6$ units from each other. Let $P$ be the mid point of the line segment joining the centres of $C_1$ and $C_2$ and $C$ be a circle touching circles $C_1$ and $C_2$ externally. If a common tangent to $C_1$ and $C$ passing through $P$ is also a common tangent to $C_2$ and $C$, then the radius of the circle $C$ is
The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-
Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is
Let $PQ$ and $RS$ be tangents at the extremeties of the diameter $PR$ of a circle of radius $r$. If $PS$ and $RQ$ intersect at a point $X$ on the circumference of the circle, then $2r$ equals