- Home
- Standard 11
- Mathematics
Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.
$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are
$(A)$ $(3,0)$ and $(0,2)$
$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$
$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is
$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$
$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$
$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is
$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$
$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$
$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$
$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$
Give the answer question $1,2$ and $3.$
$(A,B,C)$
$(D,C,A)$
$(B,B,D)$
$(A,A,C)$
Solution
$1.$ $ y=m x+\sqrt{9 m^2+4} $
$ 4-3 m=\sqrt{9 m^2+4} $
$ 16+9 m^2-24 m=9 m^2+4 \Rightarrow m=\frac{12}{24}=\frac{1}{2}$
Equation is $y-4=\frac{1}{2}(x-3)$
$2 \mathrm{y}-8=\mathrm{x}-3 \Rightarrow \mathrm{x}-2 \mathrm{y}+5=0$
Let $\mathrm{B}=(\alpha, \beta) \Rightarrow \frac{x \alpha}{9}+\frac{y \beta}{4}-1=0 \Rightarrow \frac{\alpha / 9}{1}=\frac{\beta / 4}{-2}=\frac{-1}{5} \Rightarrow \alpha=-\frac{9}{5}, \beta=\frac{8}{5}$
$B \equiv\left(-\frac{9}{5}, \frac{8}{5}\right)$
$2.$ Slope of $BD$ must be $0$
$\Rightarrow y-\frac{8}{5}=0 \quad\left(x+\frac{9}{5}\right) \Rightarrow y=\frac{8}{5}$
Hence $y$ coordinate of $D$ is $8 / 5$.
$3.$ Locus is parabola
Equation of $\mathrm{AB}$ Is $\frac{3 x}{9}+\frac{4 y}{4}=1 \Rightarrow \frac{x}{3}+y=1 \Rightarrow \mathrm{x}+3 \mathrm{y}-3=0$
$ (x-3)^2+(y-4)^2=\frac{(x+3 y-3)^2}{10} $
$ 10 x^2+90-60 x+10 y^2+160-80 y=x^2+9 y^2+9+6 x y-6 x-18 y $
$ \Rightarrow 9 x^2+y^2-6 x y-54 x-62 y+241=0$