Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.
$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are
$(A)$ $(3,0)$ and $(0,2)$
$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$
$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is
$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$
$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$
$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is
$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$
$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$
$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$
$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$
Give the answer question $1,2$ and $3.$
$(A,B,C)$
$(D,C,A)$
$(B,B,D)$
$(A,A,C)$
If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -
A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.
Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1$ at $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ where $\theta \in (0,\;\pi /2)$. Then the value of $\theta $ such that sum of intercepts on axes made by this tangent is minimum, is
Number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ from which pair of perpendicular tangents are drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is :-
The product of the lengths of perpendiculars from the foci on any tangent to the ellipse $3x^2 + 5y^2 = 1$, is