The length of the minor axis (along $y-$axis) of an ellipse in the standard form is $\frac{4}{\sqrt{3}} .$ If this ellipse touches the line, $x+6 y=8 ;$ then its eccentricity is

  • [JEE MAIN 2020]
  • A

    $\sqrt{\frac{5}{6}}$

  • B

    $\frac{1}{2} \sqrt{\frac{11}{3}}$

  • C

    $\frac{1}{3} \sqrt{\frac{11}{3}}$

  • D

    $\frac{1}{2} \sqrt{\frac{5}{3}}$

Similar Questions

If the normal to the ellipse $3x^2 + 4y^2 = 12$ at a point $P$ on it is parallel to the line, $2x + y = 4$ and the tangent to the ellipse at $P$ passes through $Q(4, 4)$ then $PQ$ is equal to

  • [JEE MAIN 2019]

The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:

  • [JEE MAIN 2024]

The equation of an ellipse whose focus $(-1, 1)$, whose directrix is $x - y + 3 = 0$ and whose eccentricity is $\frac{1}{2}$, is given by

The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$  of eccentricity e meets the axes of the ellipse in $ Q$  and $R$  then the locus of the mid-point of $QR$  is a conic with an eccentricity $e' $  such that :

The line passing through the extremity $A$ of the major axis and extremity $B$ of the minor axis of the ellipse $x^2+9 y^2=9$ meets its auxiliary circle at the point $M$. Then the area of the triangle with vertices at $A, M$ and the origin $O$ is

  • [IIT 2009]