The equation of pair of tangents to the circle ${x^2} + {y^2} - 2x + 4y + 3 = 0$ from $(6, - 5)$, is
$7{x^2} + 23{y^2} + 30xy + 66x + 50y - 73 = 0$
$7{x^2} + 23{y^2} + 30xy - 66x - 50y - 73 = 0$
$7{x^2} + 23{y^2} - 30xy - 66x - 50y + 73 = 0$
None of these
Tangent to the circle $x^2 + y^2$ = $5$ at the point $(1, -2)$ also touches the circle $x^2 + y^2 -8x + 6y + 20$ = $0$ . Then its point of contact is
Tangents are drawn from the point $(-1,-4)$ to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$. Length of corresponding chord of contact will be-
Number of integral points interior to the circle $x^2 + y^2 = 10$ from which exactly one real tangent can be drawn to the curve $\sqrt {{{\left( {x + 5\sqrt 2 } \right)}^2} + {y^2}} \, - \sqrt {{{\left( {x - 5\sqrt 2 } \right)}^2} + {y^2}\,} \, = 10$ are (where integral point $(x, y)$ means $x, y \in I)$
The set of all values of $a^2$ for which the line $x + y =0$ bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2 x ^2+2 y ^2-(1+ a ) x -(1- a ) y =0$ is equal to:
The line $ax + by + c = 0$ is a normal to the circle ${x^2} + {y^2} = {r^2}$. The portion of the line $ax + by + c = 0$ intercepted by this circle is of length