बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है
$\frac{{24}}{{25}}$
$\frac{{64}}{{25}}$
$\frac{{192}}{{25}}$
$\frac{{192}}{5}$
वृत्त ${x^2} + {y^2} = {a^2}$ पर बिन्दु $(\alpha ,\beta )$ से खींची गयी स्पर्श रेखाओं के बीच कोण है
वृत्त ${x^2} + {y^2} = 4$ के उन स्पर्शियों के समीकरण जो कि $x + 2y + 3 = 0$ के समान्तर हैं, हैं
यदि रेखा $3x + 4y - 1 = 0$ वृत्त ${(x - 1)^2} + {(y - 2)^2} = {r^2}$ को स्पर्श करती है, तो $r$ का मान होगा
रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$ की स्पर्श रेखा होगी, यदि $p = $
निम्नलिखित कथनों पर विचार करो
कथन $(A)$ : वृत्त ${x^2} + {y^2} = 1$, $x$-अक्ष के समान्तर दो स्पर्श रेखाएँ रखता है
कारण $(R)$ : वृत्त के बिन्दु $(0, \pm 1)$ पर $\frac{{dy}}{{dx}} = 0$
तब निम्नलिखित में से कौनसा कथन सहीं है