The locus of the point of intersection of the lines $ax\sec \theta + by\tan \theta = a$ and $ax\tan \theta + by\sec \theta = b$, where $\theta $ is the parameter, is

  • A

    A straight line

  • B

    A circle

  • C

    An ellipse

  • D

    A hyperbola

Similar Questions

If the eccentricities of the hyperbolas $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ and $\frac{{{y^2}}}{{{b^2}}} - \frac{{{x^2}}}{{{a^2}}} = 1$ be e and ${e_1}$, then $\frac{1}{{{e^2}}} + \frac{1}{{e_1^2}} = $

If the product of the perpendicular distances from any point on the hyperbola $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\,\, = \,1$ of eccentricity $e =\sqrt 3 \,$ from its asymptotes is equal to $6$, then the length of the transverse axis of the hyperbola is

The number of possible tangents which can be drawn to the curve $4x^2 - 9y^2 = 36$ , which are perpendicular to the straight line $5x + 2y -10 = 0$ is

A hyperbola passes through the foci of the ellipse $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is ...... .

  • [JEE MAIN 2021]

For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remain constant if $\alpha$ varies