Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -
$8$
$12$
$14$
$16$
A chord $PQ$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ subtends right angle at its centre. The locus of the point of intersection of tangents drawn at $P$ and $Q$ is-
An ellipse is drawn by taking a diameter of the circle ${\left( {x - 1} \right)^2} + {y^2} = 1$ as its semi-minor axis and a diameter of the circle ${x^2} + {\left( {y - 2} \right)^2} = 4$ is semi-major axis. If the center of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :
Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)
If the ellipse $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the $x$-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the $y$-axis, then the eccentricity of the ellipse is
The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$ of eccentricity e meets the axes of the ellipse in $ Q$ and $R$ then the locus of the mid-point of $QR$ is a conic with an eccentricity $e' $ such that :