ऊर्जा का $SI$ मात्रक $J = kg\, m ^{2} s ^{-2}$ है, चाल $v$ का $m s ^{-1}$ और त्वरण $a$ का $m s ^{-2}$ है। गतिज ऊर्जा $(k)$ के लिए निम्नलिखित सूत्रों में आप किस-किस को विमीय दृष्टि से गलत बताएँगे ? $(m$ पिण्ड का द्रव्यमान है )।

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m w^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Answer Every correct formula or equation must have the same dimensions on both sides of the equation. Also, only quantities with the same physical dimensions can be added or subtracted. The dimensions of the quantity on the right side are $\left[ M ^{2} L ^{3} T ^{-3}\right]$ for $( a ) ; \left[ M L ^{2} T ^{-2}\right]$ for $(b)$ and $(d)$: $\left[ MLT ^{-2}\right]$ for $(c)$. The quantity on the right side of $(e)$ has no proper dimensions since two quantities of different dimensions have been added. since the kinetic energy $K$ has the dimensions of $\left[ M L ^{2} T ^{-2}\right],$ formulas $(a), (c)$ and $(e)$ are ruled out. Note that dimensional arguments cannot tell which of the two, $(b)$ or $(d)$, is the correct formula. For this, one must turn to the actual definition of kinetic energy . The correct formula for kinetic energy is given by $(b)$.

Similar Questions

किसी वियुक्त निकाय में किसी गैस के अणुओं द्वारा किया गया कार्य $W =\alpha \beta^{2} e ^{-\frac{x^{2}}{\alpha kT }}$ द्वारा निरूपित किया गया है, यहाँ $x$ विस्थापन, $k$-बोल्ट्ज़मान नियतांक तथा $T$ ताप है। $\alpha$ और $\beta$ स्थिरांक हैं। $\beta$ की विमा होंगी।

  • [JEE MAIN 2021]

यदि किसी भौतिक राशि की विमाएँ $M ^{ a } L ^{ b } T ^{ c }$ से सूचित की गई हों तो यह

  • [AIPMT 2009]

किसी भौतिक राशि का SI मात्रक पास्कल सेकण्ड है तो इस राशि का विमीय सूत्र होगा-

  • [JEE MAIN 2022]

व्यंजक $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ में $P$ दाब, $ Z$ दूरी, $k$ बोल्ट्जमैन स्थिरांक एवं तापक्रम दर्शाता है तो का विमीय सूत्र होगा

  • [IIT 2004]

यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं

  • [IIT 1998]