Turpentine oil is flowing through a tube of length $l$ and radius $r$. The pressure difference between the two ends of the tube is $P .$ The viscosity of oil is given by $\eta=\frac{P\left(r^{2}-x^{2}\right)}{4 v l}$ where $v$ is the velocity of oil at a distance $x$ from the axis of the tube. The dimensions of $\eta$ are

  • [AIPMT 1993]
  • A

    $\left[ {M{L}{T^{ - 1}}} \right]$

  • B

    $\left[ M^0L^0T^0 \right]$

  • C

    $\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]$

  • D

    $\left[ {M{L^{ 2}}{T^{ - 2}}} \right]$

Similar Questions

The electrical resistance $R$ of a conductor of length $l$ and area of cross section $a$ is given by $R = \frac{{\rho l}}{a}$ where $\rho$ is the electrical resistivity. What is the dimensional formula for electrical conductivity $\sigma $ which is reciprocal of resistivity?

  • [AIEEE 2012]

If mass is written as $\mathrm{m}=\mathrm{kc}^{\mathrm{p}} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}$ then the value of $P$ will be : (Constants have their usual meaning with $\mathrm{k}$ a dimensionless constant)

  • [JEE MAIN 2024]

If momentum $(P),$ area $(A)$ and time $(T)$ are taken to be the fundamental quantities then the dimensional formula for energy is :

  • [JEE MAIN 2020]

If $R , X _{ L }$. and $X _{ C }$ represent resistance, inductive reactance and capacitive reactance. Then which of the following is dimensionless:

  • [JEE MAIN 2023]

The speed of light $(c)$, gravitational constant $(G)$ and planck's constant $(h)$ are taken as fundamental units in a system. The dimensions of time in this new system should be

  • [JEE MAIN 2019]