Concentration $C{N^ - }$ in $0.1\,M\,HCN$ is $[{K_a} = 4 \times {10^{ - 10}}]$
Accumulation of lactic acid $(HC_3H_5O_3),$ a monobasic acid in tissues leads to pain and a feeling of fatigue. In a $0.10\, M$ aqueous solution, lactic acid is $3.7\%$ dissociates. The value of dissociation constant, $K_a,$ for this acid will be
$0.01$ moles of a weak acid $HA \left( K _{ a }=2.0 \times 10^{-6}\right)$ is dissolved in $1.0\, L$ of $0.1\, M\, HCl$ solution. The degree of dissociation of $HA$ is ............. $\times 10^{-5}$
(Round off to the Nearest Integer).
[Neglect volume change on adding $HA$. Assume degree of dissociation $<< 1]$
The ${K_b}$ of ammonia is $1.8 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate the $pH$ of $0.1$ $M$ solution.
The $pH$ of $0.1\, M$ monobasic acid is $4.50$ Calculate the concentration of species $H ^{+},$ $A^{-}$ and $HA$ at equilibrium. Also, determine the value of $K_{a}$ and $pK _{a}$ of the monobasic acid.