ઉપવલય $2 x^{2}+3 y^{2}=5$ પર બિંદુ $(1,3)$ માંથી દોરવામાં આવેલ સ્પર્શકોનો જોડ વચ્ચેનો લઘુકોણ મેળવો.
$\tan ^{-1}\left(\frac{16}{7 \sqrt{5}}\right)$
$\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$
$\tan ^{-1}\left(\frac{32}{7 \sqrt{5}}\right)$
$\tan ^{-1}\left(\frac{3+8 \sqrt{5}}{35}\right)$
જો $P (x, y), F_1 = (3, 0), F_2 (-3, 0) $ અને $16x^{2} + 25y^{2} = 400$ તો $PF_1 + PF_2 = …....$
જે ઉપવલયનું એક શિરોબિંદુ $(0, 7)$ હોય અને નિયામિકા $y = 12 $ હોય, તે ઉપવલયનું સમીકરણ....
ઉપવલય ${E_1}\,\,:\,\,\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{x^2}}}{4}\, = \,\,1$એ લંબચોરસ $R$ કે જેની બાજુઓ યામાક્ષોને સમાંતર હોય તેની અંદર આવેલ છે બીજુ ઉપવલય $E_2\ (0, 4)$ તો ઉપવલય $E_2$ ની ઉત્કેન્દ્રતા :
બિંદુઓ $S$ અને $S\,'$ એ ઉપવલયની નાભીઓ અને બિંદુ $B$ એ ગૌણઅક્ષ પરના અંત્યબિંદુ છે જો $\Delta S\,'BS$ એ કાટકોણ ત્રિકોણ છે જેમાં ખૂણો $B$ કાટખૂણો હૉય અને $(\Delta S\,'BS)$ નું ક્ષેત્રફળ = $8\,$ ચો.એકમ હોય તો ઉપવલયની નાભીલંબની લંબાઈ .......... થાય
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(\pm 5,\,0),$ નાભિઓ $(\pm 4,\,0)$