10-2. Parabola, Ellipse, Hyperbola
hard

बिंदु $(1,3)$ से दीर्घवृत्त $2 x^2+3 y^2=5$ पर डाली गई दो स्पर्श रेखाओं के बीच न्यून कोण है :

A

$\tan ^{-1}\left(\frac{16}{7 \sqrt{5}}\right)$

B

$\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$

C

$\tan ^{-1}\left(\frac{32}{7 \sqrt{5}}\right)$

D

$\tan ^{-1}\left(\frac{3+8 \sqrt{5}}{35}\right)$

(JEE MAIN-2022)

Solution

Equation of tangent to the ellipse $2 x ^{2}+3 y ^{2}=5$ is

$y = mx \pm \sqrt{\frac{5}{2} m ^{2}+\frac{5}{3}}$

It pass through $(1,3)$

$3=m \pm \sqrt{\frac{5}{2} m^{2}+\frac{5}{3}}$

$3\,m^{2}+12\,m-\frac{44}{3}=0$

Let $\theta$ be the angle between the tangents

$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

$\tan \theta=\left|\frac{3 \sqrt{320}}{-35}\right|$

$\theta=\tan ^{-1}\left(\frac{24}{7 \sqrt{5}}\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.