If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta  > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to

  • [JEE MAIN 2019]
  • A

    $2\sqrt 2  + 1$

  • B

    $\sqrt 2  - 1$

  • C

    $\sqrt 2  + 1$

  • D

    $2\sqrt 2  - 1$

Similar Questions

On the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ let $P$ be a point in the second quadrant such that the tangent at $\mathrm{P}$ to the ellipse is perpendicular to the line $x+2 y=0$. Let $S$ and $\mathrm{S}^{\prime}$ be the foci of the ellipse and $\mathrm{e}$ be its eccentricity. If $\mathrm{A}$ is the area of the triangle $SPS'$ then, the value of $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ is :

  • [JEE MAIN 2021]

The ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the straight line $y = mx + c$ intersect in real points only if

Let $\mathrm{E}$ be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4) .$ If $m x-y=4, m\,>\,0$ is a tangent to the ellipse $\mathrm{E}$, then the value of $5 \mathrm{~m}^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

Eccentricity of the conic $16{x^2} + 7{y^2} = 112$ is

If the midpoint of a chord of the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ is $(\sqrt{2}, 4 / 3)$, and the length of the chord is $\frac{2 \sqrt{\alpha}}{3}$, then $\alpha$ is :

  • [JEE MAIN 2025]