If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to
$2\sqrt 2 + 1$
$\sqrt 2 - 1$
$\sqrt 2 + 1$
$2\sqrt 2 - 1$
The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are
The line, $ lx + my + n = 0$ will cut the ellipse $\frac{{{x^2}}}{{{a^2}}}$ $+$ $\frac{{{y^2}}}{{{b^2}}}$ $= 1 $ in points whose eccentric angles differ by $\pi /2$ if :
The equation $\frac{{{x^2}}}{{2 - r}} + \frac{{{y^2}}}{{r - 5}} + 1 = 0$ represents an ellipse, if
In a triangle $A B C$ with fixed base $B C$, the vertex $A$ moves such that $\cos B+\cos C=4 \sin ^2 \frac{A}{2} .$ If $a, b$ and $c$ denote the lengths of the sides of the triangle opposite to the angles $A, B$ and $C$, respectively, then
$(A)$ $b+c=4 a$
$(B)$ $b+c=2 a$
$(C)$ locus of point $A$ is an ellipse
$(D)$ locus of point $A$ is a pair of straight lines
The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is