Two spherical bodies of mass $M$ and $5M$ and radii $R$ and $2R$ respectively are released in free space with initial separation between their centres equal to $12\,R$. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is
$1.5\, R$
$2.5\, R$
$4.5\, R$
$7.5\, R$
A particle of mass $M$ is situated at the centre of a spherical shell of same mass and radius $a$. The gravitational potential at a point situated at $\frac {a}{2}$ distance from the centre, will be
The orbital velocity of an artificial satellite in a circular orbit very close to earth is $v$. The velocity of a geo-stationary satellite orbiting in circular orbit at an altitude of $3R$ from earth's surface will be
In a certain region of space, the gravitational field is given by $-k/r$ , where $r$ is the distance and $k$ is a constant. If the gravitational potential at $r = r_0$ be $V_0$ , then what is the expression for the gravitational potential $(V)$ ?
Two particles of equal mass go round a circle of radius $R$ under the action of their mutual gravitational attraction. The speed of each particle is
The kinetic energy needed to project a body of mass $m$ from the earth's surface (radius $R$) to infinity is