The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is $B_0 = 510 \;nT$.What is the amplitude of the electric field (in $N/C$) part of the wave?
Amplitude of magnetic field of an electromagnetic wave in a vacuum,
$B_{0}=510 nT =510 \times 10^{-9} T$
Speed of light in a vacuum, $c=3 \times 10^{8} m / s$
Amplitude of electric field of the electromagnetic wave is given by the relation,
$E=c B_{0}=3 \times 10^{8} \times 510 \times 10^{-9}=153 N / C$
Therefore, the electric field part of the wave is $153 N / C$.
The electric fields of two plane electromagnetic plane waves in vacuum are given by
$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and
$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$
At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is
The electric field in a plane electromagnetic wave is given by
$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$
If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.
In a plane electromagnetic wave, which of the following has/ have zero average/value in one complete cycle?
$(a)$ Magnetic field
$(b)$ Magnetic energy
$(c)$ Electric field
$(d)$ Electric energy
A plane electromagnetic wave is propagating along the direction $\frac{\hat{i}+\hat{j}}{\sqrt{2}},$ with its polarization along the direction $\hat{\mathrm{k}}$. The correct form of the magnetic field of the wave would be (here $\mathrm{B}_{0}$ is an appropriate constant)
The electric field in an electromagnetic wave is given by ${E}=\left(50\, {NC}^{-1}\right) \sin \omega({t}-{x} / {c})$
The energy contained in a cylinder of volume ${V}$ is $5.5 \times 10^{-12} \, {J}$. The value of ${V}$ is $......{cm}^{3}$ $\left(\right.$ given $\left.\in_{0}=8.8 \times 10^{-12} \,{C}^{2} {N}^{-1} {m}^{-2}\right)$