Which of the following statement is false for the properties of electromagnetic waves ?
Both electric and magnetic field vectors attain the maxima and minima at the same place and same time.
The energy in electromagnetic wave is divided equally between electric and magnetic vectors.
Both electric and magnetic field vectors are parallel to each other and perpendicular to the direction of propagation of wave
These waves do not require any material medium for propagation
A plane $EM$ wave travelling in vacuum along $z-$ direction is given by $\vec E = {E_0}\,\,\sin (kz - \omega t)\hat i$ and $\vec B = {B_0}\,\,\sin (kz - \omega t)\hat j$.
$(i)$ Evaluate $\int {\vec E.\overrightarrow {dl} } $ over the rectangular loop $1234$ shown in figure.
$(ii)$ Evaluate $\int {\vec B} .\overrightarrow {ds} $ over the surface bounded by loop $1234$.
$(iii)$ $\int {\vec E.\overrightarrow {dl} = - \frac{{d{\phi _E}}}{{dt}}} $ to prove $\frac{{{E_0}}}{{{B_0}}} = c$
$(iv)$ By using similar process and the equation $\int {\vec B} .\overrightarrow {dl} = {\mu _0}I + { \in _0}\frac{{d{\phi _E}}}{{dt}}$ , prove that $c = \frac{1}{{\sqrt {{\mu _0}{ \in _0}} }}$
In a plane $EM$ wave, the electric field oscillates sinusoidally at a frequency of $5 \times 10^{10} \mathrm{~Hz}$ and an amplitude of $50 \mathrm{Vm}^{-1}$. The total average energy density of the electromagnetic field of the wave is :
[Use $\varepsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2$ ]
Which scientist discarded postulate of ether?
An electron is constrained to move along the $y-$axis with a speed of $0.1\, c$ (c is the speed of light) in the presence of electromagnetic wave, whose electric field is $\overrightarrow{ E }=30 \hat{ j } \sin \left(1.5 \times 10^{7} t -5 \times 10^{-2} x \right)\, V / m$ The maximum magnetic force experienced by the electron will be: (given $c=3 \times 10^{8}\, ms ^{-1}$ and electron charge $\left.=1.6 \times 10^{-19} C \right)$
The ratio of the magnitude of the magnetic field and electric field intensity of a plane electromagnetic wave in free space of permeability $\mu_0$ and permittivity $\varepsilon_0$ is (Given that $c$ - velocity of light in free space)