The oscillating magnetic field in a plane electromagnetic wave is given by $B _{ y }=5 \times 10^{-6} \sin$ $1000\,\pi\left(5 x -4 \times 10^{8} t \right) T$. The amplitude of electric field will be.
$15 \times 10^{2} \,Vm ^{-1}$
$5 \times 10^{-6} \,Vm ^{-1}$
$16 \times 10^{12} \,Vm ^{-1}$
$4 \times 10^{2} \,Vm ^{-1}$
Electromagnetic wave consists of periodically oscillating electric and magnetic vectors
The magnetic field of a plane electromagnetic wave is given by $\overrightarrow{ B }=3 \times 10^{-8} \cos \left(1.6 \times 10^3 x +48 \times 10^{10} t \right) \hat{ j }$, then the associated electric field will be :
In an electromagnetic wave, the electric and magnetising fields are $100\,V\,{m^{ - 1}}$ and $0.265\,A\,{m^{ - 1}}$. The maximum energy flow is.......$W/{m^2}$
Electromagnetic wave of intensity $1400\, W/m^2$ falls on metal surface on area $1.5\, m^2$ is completely absorbed by it. Find out force exerted by beam
In the given electromagnetic wave $E_y=600 \sin (\omega t-k x) \mathrm{Vm}^{-1}$, intensity of the associated light beam is (in $\mathrm{W} / \mathrm{m}^2$ ); (Given $\epsilon_0=$ $\left.9 \times 10^{-12} \mathrm{C}^{-2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$