दीर्घवृत्त  $3{x^2} + 2{y^2} = 5$ पर बिन्दु  $(1, 2)$ से खींची गयीं स्पर्श रेखाओं के बीच कोण है    

  • A

    ${\tan ^{ - 1}}\left( {\frac{{12}}{5}} \right)$

  • B

    ${\tan ^{ - 1}}(6\sqrt 5 )$

  • C

    ${\tan ^{ - 1}}\left( {\frac{{12}}{{\sqrt 5 }}} \right)$

  • D

    ${\tan ^{ - 1}}(12\sqrt 5 )$

Similar Questions

माना परवलय $y ^2=4 x$ की नाभिय जीवा $PQ$ इस प्रकार है कि यह बिन्दु $(3,0)$ पर $\frac{\pi}{2}$ का कोण अन्तरित करती है। माना रेखाखण्ड $PQ$, दीर्घवृत्त $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2 > b^2$ की नाभिय जीवा भी है। यदि दीर्घवृत्त $E$ की उत्केन्द्रता $e$ है, तो $\frac{1}{ e ^2}$ का मान है :

  • [JEE MAIN 2022]

मान लें $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$ एक दीर्घवृत्त है जिसका दीर्घ अक्ष $A B$ एवं लघु अक्ष $C D$ है. मान लें कि $F_1$ एवं $F_2$ इसकी दो नाभियाँ हैं. खंड $A B$ में $A, F_1, F_2, B$ क्रम में हैं. मान लें $\angle F_1 C B=90^{\circ}$, दीर्घवृत्त की उत्केन्द्रता है.

  • [KVPY 2020]

माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]

दीर्वृघत $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ को नाभियो से होकर जाने वाले उस वृत, जिसका केन्द्र $(0,3)$ है, का समीकरण है,

  • [JEE MAIN 2013]

यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की द्विगुणित कोटि $PQ$ ,इस प्रकार है कि $OPQ$ एक समबाहु त्रिभुज है, जबकि $O$ अतिपरवलय का केन्द्र है, तब अतिपरवलय की उत्केन्द्रता $e$ संतुष्ट करती है