ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ના નાભિલંબોના અંત્યબિંદુઓ આગળના સ્પર્શકો દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ (ચોરસ એકમમાં) મેળવો.
$27$
$\frac{{27}}{4}$
$18$
$\frac{{27}}{2}$
વર્તુળની ત્રિજ્યા મેળવો કે જેનું કેન્દ્ર $(0, 3)$ હોય અને જે ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ ની નાભીમાંથી પસાર થાય છે .
બિંદુ $(4,3)$ તથા ઉપવલય $x^{2}+2 y^{2}=4$ પરનાં બિંદુુઓને જોડતી રૈખાખંડનાં મધ્યબિંદુનો બિંદુપથ એ$\dots\dots\dots$ ઉત્કેન્દ્રતાવાળો ઉપવલય છે.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ $b=3,\,\, c=4,$ કેન્દ્ર ઊગમબિંદુ તથા નાભિઓ $x-$ અક્ષ પર હોય.
અહી $\theta$ એ ઉપવલય $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ અને વર્તુળ $x^{2}+y^{2}=3$ નાં પ્રથમ ચરણનાં છેદબિંદુ આગળનાં સ્પર્શકો વચ્ચેનો ખૂણો છે તો $\tan \theta$ ની કિમંત મેળવો.
જો ઉપવલય $25 x^{2}+4 y^{2}=1$ પરના બિંદુ $(\alpha, \beta)$ માંથી પરવલય $y^{2}=4 x$ ને દોરેલ બે સ્પર્શકો એવા છે કે જેથી એક સ્પર્શકનો ઢાળ, બીજો સ્પર્શકના ઢાળ કરતાં ચાર ઘણો હોય, તો $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ નું મુલ્ય...................... છે.