10-2. Parabola, Ellipse, Hyperbola
hard

ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ ના કોઈ પણ નાભિબિંદુમાંથી ઉપવલયના કોઈ પણ સ્પર્શક ને લંબપાદ પરના બિંદુપથ પરનું નીચેનામાંથી ક્યું બિંદુ આવેલ છે?

A

$(-1, \sqrt{3})$

B

$(-1, \sqrt{2})$

C

$(-2, \sqrt{3})$

D

$(1,2)$

(JEE MAIN-2020)

Solution

Let foot of perpendicular is $( h , k )$

$\frac{x^{2}}{4}+\frac{y^{2}}{2}=1 \quad($ Given $)$

$a=2, b=\sqrt{2}, e=\sqrt{1-\frac{2}{4}}=\frac{1}{\sqrt{2}}$

$\therefore$ Focus $( ae , 0)=(\sqrt{2}, 0)$

Equation of tangent

$y=m x+\sqrt{a^{2} m^{2}+b^{2}}$

$y \equiv m x+\sqrt{4 m^{2}+2}$

Passes throguh (h,k) $( k – mh )^{2}=4 m ^{2}+2$

line perpendicular to tangent will have slope

$-\frac{1}{m}$

$y-0=-\frac{1}{m}(x-\sqrt{2})$

$my =- x +\sqrt{2}$

$( h + mk )^{2}=2$

Add equaiton (1) and (2) $k ^{2}\left(1+ m ^{2}\right)+ h ^{2}\left(1+ m ^{2}\right)=4\left(1+ m ^{2}\right)$

$h^{2}+k^{2}=4$

$x^{2}+y^{2}=4$ (Auxilary circle)

$\therefore(-1, \sqrt{3})$ lies on the locus.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.