Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to
$\overrightarrow b $
$\overrightarrow c $
$\overrightarrow b \,.\,\overrightarrow c $
$\overrightarrow b \times \overrightarrow c $
Which of the following is not true ? If $\overrightarrow A = 3\hat i + 4\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ where $ A$ and $B$ are the magnitudes of $\overrightarrow A $ and $\overrightarrow B $
The two vectors $\vec A$ and $\vec B$ that are parallel to each other are
The position vectors of points $A, B, C$ and $D$ are $A = 3\hat i + 4\hat j + 5\hat k,\,\,B = 4\hat i + 5\hat j + 6\hat k,\,\,C = 7\hat i + 9\hat j + 3\hat k$ and $D = 4\hat i + 6\hat j$ then the displacement vectors $AB$ and $CD $ are
If $\overrightarrow A \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-