- Home
- Standard 11
- Mathematics
एक समबाहु त्रिभुज का आधार रेखा $3 x+4 y=9$ के अनुदिश है। यदि त्रिभुज का एक शीर्ष $(1,2)$ है तो त्रिभुज की एक भुजा की लंबाई है
$\frac{{2\sqrt 3 }}{{15}}$
$\frac{{4\sqrt 3 }}{{15}}$
$\frac{{4\sqrt 3 }}{{5}}$
$\frac{{2\sqrt 3 }}{{5}}$
Solution

Shortes distance of a point $\left( {{x_1},{y_1}} \right)$ from line $ax + by = c$ is
$d = \frac{{a{x_1} + b{y_1} – c}}{{\sqrt {{a^2} + {b^2}} }}$
Now shortest distance of $P(1,2)$ from $3x+4y=9$ is
$PC = d = \frac{{3\left( 1 \right) + 4\left( 2 \right) – 9}}{{\sqrt {{3^2} + {4^2}} }} = \frac{2}{5}$
Given that $\Delta APB$ is equilateral triangle
Let $'a'$ be its side
then $PB = a,Cb = \frac{a}{2}$
Now,In $\Delta PCB,{\left( {PB} \right)^2} = {\left( {PC} \right)^2} + {\left( {CB} \right)^2}$
(By Pythagoras theorem )
${a^2} = {\left( {\frac{2}{5}} \right)^2} + \frac{{{a^2}}}{4}$
${a^2} – \frac{{{a^2}}}{4} = \frac{4}{{25}} \Rightarrow \frac{{3{a^2}}}{4} = \frac{4}{{25}}$
${a^2} = \frac{{16}}{{75}} \Rightarrow a = \sqrt {\frac{{16}}{{75}}} = \frac{4}{{5\sqrt 3 }} \times \frac{{\sqrt 3 }}{{\sqrt 3 }} = \frac{{4\sqrt 3 }}{{15}}$
$\therefore $ Lengh of Equilateral triangle $(a) = \frac{{4\sqrt 3 }}{5}$