पाइथागोरस प्रमेय के प्रयोग बिना दिखलाइए कि बिंदु $(4,4),(3,5)$ और $(-1,-1)$ एक समकोण त्रिभुज के शीर्ष हैं।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The vertices of the given triangle are $A(4,4), B(3,5),$ and $C(-1,-1)$. 

It is known that the slope $(m)$ of a non-vertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2},\right.$ $y $$_{2}$ $)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$

$\therefore$ Slope of $AB \left( m _{1}\right)=\frac{5-4}{3-4}=-1$

Slope of $BC \left( m _{2}\right)=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2}$

Slope of $CA \left( m _{3}\right)=\frac{4+1}{4+1}=\frac{5}{5}=1$

It is observed that $m _{1} m _{3}=-1$

This shows that line segments $AB$ and $CA$ are perpendicular to each other i.e., the given triangle is right-angled at $A (4,4)$

Thus, the points $(4,4),(3,5),$ and $(-1,-1)$ are the vertices of a right-angled triangle.

Similar Questions

किसी समान्तर चतुभुज की दो आस भुजायें $4x + 5y = 0$ व $7x + 2y = 0$ हैं। यदि एक विकर्ण का समीकरण $11x + 7y = 9$ हो, तो दूसरे विकर्ण का समीकरण है

  • [IIT 1970]

माना एक त्रिभुज, रेखाओं $L _1: 2 x +5 y =10$; $L _2:-4 x +3 y =12$ द्वारा परिबद्ध है तथा रेखा $L _3$ जो बिन्दु $P (2,3)$ से गुजरती है रेखा $L _2$ को $A$ पर तथा रेखा $L _1$ को $B$ पर काटती है। यदि बिन्दु $P$, रेखाखण्ड $AB$ को आंतरिक रूप से $1: 3$ के अनुपात में विभाजित करता है, तो त्रिभुज का क्षेत्रफल के बराबर है

  • [JEE MAIN 2022]

बिन्दु $(1, 3)$ और $(5, 1)$ एक आयत के विपरीत शीर्ष हैं। शेष दो शीर्ष, रेखा $y = 2x + c$ पर स्थित हैं, तब $c$ का मान होगा

  • [IIT 1981]

बिंदु $(2,3)$ के रेखा $(2 x-3 y+4)+k(x-2 y+3)=0, k \in R$ में प्रतिबिंब का बिंदुपथ एक

  • [JEE MAIN 2015]

एक समबाहु त्रिभुज के आधार का समीकरण $2x - y = 1$ और शीर्ष $(-1, 2)$ है, तब त्रिभुज की भुजा की लम्बाई होगी