रेखाओं $x = 0,\;y = 0,\;x + y = 1$ व $6x + y = 3$ द्वारा निर्मित चतुभुज का मूल बिन्दु से जाने वाला विकर्ण है
$3x - 2y = 0$
$2x - 3y = 0$
$3x + 2y = 0$
इनमें से कोई नहीं
त्रिभुज $ABC$ का आधार $BC$ बिन्दु $(p, q)$ पर समद्विभाजित होता है तथा $AB$ व $AC$ के समीकरण क्रमश: $x + y + 3 = 0$ व $qx + py = 1$ हैं, तो $A$ से जाने वाली वाली माध्यिका का समीकरण है
यदि एक रेखा $L$, रेखा $5 x-y=1$ पर लंबवत है तथा रेखा $L$ तथा निर्देशांक अक्षों द्वारा बनी त्रिभुज का क्षेत्रफल $5$ है, तो रेखा $L$ की रेखा $x+5 y=0$ से दूरी है
किसी वर्ग के विपरीत शीर्ष $(3,\;4)$ व $(1,\; - \;1)$ हैं, तो अन्य दो शीर्षों के निर्देशांक हैं
मूलबिन्दु से खींची गयी सरल रेखायुग्म एक अन्य रेखा $2x + 3y = 6$ के साथ समद्विबाहु समकोण त्रिभुज बनाती है, तो सरल रेखाओं के समीकरण एवं इस प्रकार प्राप्त त्रिभुज का क्षेत्रफल होगा
माना एक समांतर चतुर्भुज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ तथा $\mathrm{D}(\gamma, \delta)$ है। यदि बिंदु $C$ रेखा $2 x-y=5$ पर है तथा बिंदु $D$, रेखा $3 x-2 y=6$ पर है तो $|\alpha+\beta+\gamma+\delta|$ का मान बराबर है ...............