જો કાર્તેઝિય ગુણાકાર $A$ $\times$ $A$ ના ઘટકોની સંખ્યા $9$ હોય અને તેમાંના બે ઘટકો $(-1,0)$ અને $(0,1)$ હોય, તો $A$ શોધો તથા $A$ $\times$ $A$ ના બાકીના ઘટકો લખો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that if $n(A)=p$ and $n(B)=q,$ then $n(A \times B)=p q$

$\therefore n(A \times A)=n(A) \times n(A)$

It is given that $n(A \times A)=9$

$\therefore n(A) \times n(A)=9$

$\Rightarrow n(A)=3$

The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$

We know that $A \times A=\{(a, a): a \in A\} .$ Therefore, $-1,0,$ and $1$ are elements of $A$

Since $n(A)=3,$ it is clear that $A=\{-1,0,1\}$

The remaining element of set $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,0),$ and $(1,1)$

Similar Questions

જો $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$તો $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ એ  . . . . . બરાબર છે.

જો $A, B, C$ એ એવા ત્રણ ગણ છે કે જેથી $n(A \cap  B) = n(B \cap  C) = n(C \cap  A) = n(A \cap  B \cap  C) = 2$ થાય તો $n((A × B) \cap  (B × C)) $ = 

ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times(B \cap C)=(A \times B) \cap(A \times C)$

જો $A, B$ અને $C$ એ ત્રણ ગણ હોય તો  $A × (B \cup C)$ મેળવો.

ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times C$ એ $B \times D$ નો ઉપગણ છે.