कार्तीय गुणन $A \times A$ में $9$ अवयव हैं, जिनमें $(-1,0)$ तथा $(0,1)$ भी है। समुच्चय $A$ ज्ञात कीजिए तथा $A \times A$ के शेष अवयव भी ज्ञात कीजिए।
We know that if $n(A)=p$ and $n(B)=q,$ then $n(A \times B)=p q$
$\therefore n(A \times A)=n(A) \times n(A)$
It is given that $n(A \times A)=9$
$\therefore n(A) \times n(A)=9$
$\Rightarrow n(A)=3$
The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$
We know that $A \times A=\{(a, a): a \in A\} .$ Therefore, $-1,0,$ and $1$ are elements of $A$
Since $n(A)=3,$ it is clear that $A=\{-1,0,1\}$
The remaining element of set $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,0),$ and $(1,1)$
मान लीजिए कि $A =\{1,2\}, B =\{1,2,3,4\}, C =\{5,6\}$ तथा $D =\{5,6,7,8\} .$ सत्यापित कीजिए कि
$A \times C , B \times D$ का एक उपसमुच्चय है।
यदि $(x+1, y-2)=(3,1),$ तो $x$ और $y$ के मान ज्ञात कीजिए
$A = \{1, 2, 3\} $ तथा $B =\{3, 8\},$ तब $(A \cup B) × (A \cap B) $ है
यदि $ (1, 3), (2, 5)$ और $(3, 3), $ $A × B$ के तीन अवयव हैं तथा $A \times B$ के कुल अवयवों की संख्या $6 $ है, तब $A \times B$ के शेष अवयव हैं
यदि $R$ समस्त वास्तविक संख्याओं का समुच्चय है, तो कार्तीय गुणन $R \times R$ और $R \times R \times R$ क्या निरूपित करते हैं ?